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Abstract

The subsonic flight test evaluation phase of the

NASA F-15 (powered by F100 engines) performance
seeking control program was completed for single-

engine operation at part- and military-power settings.

The subsonic performance seeking control algorithm

optimizes the quasi-steady-state performance of the

propulsion system for three modes of operation. The
minimum fuel flow mode minimizes fuel consumption.

The minimum temperature mode extends turbine life

by decreasing the fan turbine inlet temperature. The
maximum thrust mode maximizes thrust at military

power. Decreases in thrust-specific fuel consumption of

1 to 2 percent were measured in the minimum fuel flow

mode; these fuel savings are significant especially for

supersonic cruise aircraft. Decreases of up to approx-

imately 100 °R in fan turbine inlet temperature were
measured in the minimum temperature mode. Temper-

ature reductions of this magnitude would more than

double turbine life if inlet temperature was the only

life factor. Measured thrust increases of up to approxi-

mately 15 percent in the maximum thrust mode cause

substantial increases in aircraft acceleration. The sys-

tem dynamics of the closed-loop algorithm operation

were good. The subsonic flight phase has validated

the performance seeking control technology, which can
significantly benefit the next generation of fighter and

transport aircraft.

Nomenclature

AAHT area adder high-pressure turbine
component deviation parameter, in 2

AJ nozzle throat area, in 2
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effective nozzle throat area, in 2
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compact engine model
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compact propulsion system model

digital electronic engine control

high-pressure turbine component
deviation parameter, percent

low-pressure turbine component
deviation parameter, percent

change in fan airflow component
deviation parameter, lb/sec

change in high-pressure compressor

airflow component deviation
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engine pressure ratio, PT6/PT2
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matrix
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fan rotor speed, rpm
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temperature, rpm
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2

2.5

3
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propulsion system matrix

total pressure, lb/in 2 (used with engine

location suffixes, list follows)

rear compressor variable vane angle, deg

fan stall margin, percent

high-pressure compressor stall margin,

percent

steady-state-variable model

state-variable model

composite turbine metal temperature, °R

thrust-specific fuel consumption,
WF/FNP, hr -1

total temperature, °R (used with

suffixes, list follows)

vector of control variables in the state-

variable model

vector of control variables in the compact
inlet model

vector of control variables in the steady-
state-variable model

vector of control variables in the linear

programming problem

DEEC calculated airflow, lb/sec

corrected fan airflow, lb/sec

corrected high-pressure compressor

airflow, lb/sec

gas generator fuel flow, lb/hr

vector of state variables in the state-

variable model

vector of output variables in the state-
variable model

vector of output variables in the compact
inlet model

vector of output variables in the steady-
state-variable model

vector of output variables in the linear

programming problem

PWl128 engine station numbers,

fan inlet

compressor inlet

compressor discharge

high-pressure turbine inlet

low-pressure turbine inlet

6 afterburner inlet

7 nozzle throat

Introduction

The application of digital engine control has opened
up the possibility of significantly improving the perfor-

mance of the aircraft-propulsion system by applying

optimal control algorithms to the integrated aircraft-
propulsion system. The development and implemen-

tation of this technology will provide a wide range
of benefits in both civil and military applications by

extending engine life and maximizing fuel efficiency
and thrust.

To develop this optimal performance technology

base, NASA Dryden Flight Research Center (Edwards,

CA), McDonnell Aircraft Company (St. Louis, MO),

and Pratt & Whitney (West Palm Beach, FL) have

developed and flight-tested an adaptive performance

seeking control (PSC) system with the objective of op-
timizing the quasi-steady-state performance of the F-15
propulsion system. 1,2 The PSC system was developed

with the following optimization modes: minimum fuel

flow at constant thrust, minimum turbine temperature,
and maximum thrust.

Subsonic flight testing of the PSC algorithm at
NASA Dryden covered the three PSC optimization

modes at part-power and military- (MIL) power con-

ditions. Preliminary results were previously reported. 3

This paper describes the algorithm, reviews the flight

test program including maneuvers used, and presents
quantitative flight results of the benefits of the various

modes. Additional results from the current flight test
program covering comparisons of PSC operation with

predictions, operation of the real-time in-flight estima-

tion process, in-flight identification, and ground test

results are presented in Refs. 4-7.

Airplane and Engine Description

The PSC system was implemented on the NASA

F-15 research airplane (Fig. 1), which is a high-

performance aircraft capable of speeds in excess of

Mach 2. The NASA F-15 is powered by two F100
derivative (PW1128) afterburning tlarbofan engines, s

The aircraft was modified with a digital electronic en-

gine control (DEEC) system.

The PWl128 engine 9 is a low-bypass ratio, twin

spool, afterburning turbofan technology demonstra-
tor, derived from the F100-PW-100 engine. The en-

gine is controlled by a full-authority DEEC system
that is similar to the current production F100 engine

controller. The DEEC provides open-loop scheduling

of compressor inlet variable vanes (CIVV) and rear

compressor variable vanes (RCVV) positions based on



rotorspeeds.Closed-loopfeedbackcontrolofcorrected
fanspeed(N1C2)andenginepressureratio (EPR)is
providedthroughthefuelflow(WF) andnozzlearea
(AJ), respectively. The DEEC software was modi-
fied to accommodate PSC trim commands; however

the normal DEEC control loops (i.e., N1C2 and EPR)
were not modified. The DEEC trim commands for sub-

sonic, nonafterburning conditions are perturbations on

CIVV, RCVV, N1C2, and AJ.

Two engines with different performance levels-one
refurbished and one degraded-were evaluated during

the subsonic phase of the program. Initial PSC sys-

tem testing used a recently refurbished engine installed

in the right side of the aircraft. All algorithm verifi-

cation and early testing were done with this engine.

All of the PSC design work used models of a nomi-
nal engine, which represents an engine as it comes off

the production line or, in our case, the refurbished en-

components were recorded. In the optimization phase

(discussed later), the operating condition constraints,
optimal solution, and linear programming health sta-
tus condition codes were recorded. Finally, the actual

commands that were sent to the engine through the

DEEC were recorded.

The airdata used for the PSC system were obtained

from the F-15 production side probes. The algorithm

corrects the data for position error and location effects.
The airdata were recorded at 20 Hz. All data were

recorded on a pulse code modulation system.

Performance Seeking Control Law

Algorithm

The PSC algorithm estimates optimal control set-

tings for an adaptive, onboard propulsion system
model. The algorithm flow diagram (Fig. 3) consists

of estimation, modeling, and optimization processes.
gine. Near the end of the subsonic flight test program,
a very degraded engine was installed in the left side The estimation process uses a Kalman filter to esti-

of the aircraft. This engine was degraded to such an mate five component deviation parameters. These pa-
extent that it was estimated to have as few as five rameters account for the off-nominal operation of the

flight hours remaining on it. The main degradation engine during flight. They are related to the changes

was in the high-pressure rotor; both the compressor in efficiency of the low- and high-pressure turbine

and turbine had significant efficiency degradation, es- D_L_ and DEHPT, respectively), the changes in

timated to be approximately 2 percent in each flow fan and high-pressure compressor airflow (DWFAN

path cross-sectional area.

Instrumentat ion

Figure 2 shows a diagram of the PW1128 engine with
the locations of the DEEC sensors and additional re-

search instrumentation noted. Fan airflow (WCFAN)

and engine face total pressure (PT2) are independently

modeled by both the DEEC and PSC control laws.

The PSC algorithm was developed using only conven-

tional DEEC-instrumented parameters as inputs, and

the algorithm estimates other necessary parameters.
The engine instrumentation and PSC parameters were
recorded at 20 Hz.

In addition to the basic engine parameters, the

challenging nature of the technology being demon-

strated required the recording of many internal algo-
rithm variables. These additional variables provided

for detailed real-time and postflight analysis of the

algorithm. More than 200 internal parameters were

recorded at a rate of 100 samples/sec.

Figure 3 presents a flow diagram of the algorithm.
The control law consists of estimation, modeling, and

optimization processes. In the Kalman-filter estima-

tor (discussed later), the inputs, outputs, and residu-
ais were recorded. At the compact propulsion system

modeling stage (discussed later), all the estimated inlet

and engine parameters were recorded. In addition to

temperatures, pressures, and control positions, such es-

timated parameters as stall margins, thrust, and drag

and DWHPC, respectively), and a high-pressure tur-

bine area adder (AAHT).

The second step formulates the compact propulsion

system model (CPSM) to estimate unmeasured engine
outputs required to obtain an optimal solution. The

component deviation parameters estimated in the first

step are input to the CPSM. These parameters shift
the model to reflect the actual operating condition

of the engine required by the follow-on optimization.

Flight measurements are used to look up model data
and as direct inputs to the Kalman filter and CPSM.

A propulsion system matrix (PSM), which is linear, is
derived from the nonlinear CPSM.

The optimal solution of the PSM within the defined

constraints is obtained using a linear programming al-

gorithm. The true optimal engine operating point re-

quires iterating on the CPSM modeling and linear pro-

gramming optimization a specified number of times be-
cause of the nonlinearity of the CPSM. The iterative

process is referred to as inner looping. The component

deviation parameters are assumed constant during the

inner looping. Once the inner loop is completed, the

engine interface logic determines the trims required to
achieve the current optimal operating conditions.

Kalman Filter

The first step in the estimation process identifies the

off-nominal characteristics of the engine when operat-

ing at or near steady-state conditions. This is done by



estimatingfivecomponentdeviationparameterswitha
Kalmanfilter. Theseparametersareusedto adjustthe
nominalCPSMtomorecloselymatchtheactualengine
operatingcondition.A state-variablemodel(SVM)is
usedin thedesignandimplementationoftheKalman
estimator.It is apiecewiselinearmodelcoveringthe
entirerangeof engineoperationat 0.9Mach,30,000-ft
altitude,andstandarddayconditions.It consistsof
a state-spaceperturbationmodel,anassociatedtable
of steady-statetrim valuesfor all enginevariablesin
themodel,andsomeextendedcalculations.Thestate
(x), control(u), andoutput(y) vectorsaredefinedas
follows:

x = IN1 N2 TMT DEHPT DELPT DWFAN

DWHPC AAHT] T

u = [WF AJ CIVV RCVV HPX BLD] T

y = [PT6 PT4 TT4.5 N1 N2] T

The values for the fan rotor speed (N1), compressor ro-

tor speed (N2), and composite turbine metal tcmpera-
ture (TMT) are the original states of the engine model.

These three states are then augmented in the Kalman-
filter estimator by the five component deviation pa-

rameters so that these deviation parameters could be

estimated. Values for the following output and control

variables are taken directly from flight data: N1, N2,

burner pressure (PB), TT4.5, PT6, WF, A J, CIVV,

and RCVV. The PT4 is modeled as a function of PB;
horsepower extraction, HPX, is scheduled as a func-

tion of N2; and bleed airflow, BLD, is scheduled as a

function of Mach and altitude. Additional engine and

flight parameters are used indirectly by the Kalman-

filter algorithm for correcting the engine data and cal-

culating other engine variables. The measured and cal-

culated variables are corrected to the SVM design con-
dition of Mach 0.9 and 30,000-ft altitude. Additional

information on the development and implementation
of the Kalman filter can be found elsewhere, s,l°

Compact Propulsion System Model

The second step in the estimation process is for-
mulation of the CPSM. The CPSM combines two

smaller compact models-the compact engine model

(CEM) and the compact inlet model (CIM)-that to-

gether model the propulsion system and form the basis
for the optimization process.

Compact Engine Model

The CEM consists of a linear steady-state variable

model (SSVM) and follow-on nonlinear calculations.

The SSVM has a design condition of Mach 0.9, 30000-ft
altitude but has been shifted to a sea-level static ref-

erence condition for implementation. The SSVM is of

the form

ym= [El

where F is the sensitivity matrix and u,_ and y,n repre-

sent the SSVM control and output vectors respectively.

They are defined to be

um= [WF PT6 CIVV RCVV HPX BLD DEHPT

DELPT DWHPC DWFAN AAHT] T

Ym = [N1 N2 AJ PT2.5 PT4 TT2.5 TT3 TT4 TT4.5

TT6 WCFAN WCHPC] T

The SSVM uses engine measurements for the follow-
ing variables: WF, PT6, CIVV, and RCVV. Horse-

power extraction and bleed airflow are again derived

from schedules. The measured inputs are corrected
to the SSVM sea-level static reference condition us-

ing correction factors that are a function of PT2 and

TT2. The Kalman-filter estimates of the component

deterioration parameters are input to the SSVM calcu-
lation as part of the input vector. The SSVM provides

estimates of the Ym variables at sea-level static condi-
tions. These estimates are then 'uncorrected' to the

original flight condition for use in the subsequent non-
linear CEM calculations.

Following completion of the linear SSVM calcula-
tion, the nonlinear CEM estimates are calculated at the

original flight condition. These variables include gross

thrust, ram drag, nozzle drag, high-pressure compres-

sor stall margin, effective nozzle throat area (AJNL),
net propulsive force (FNP), fan stall margin (SMF),
PTT, and TT7. The nonlinear calculations use a com-

bination of analytical equations and empirically de-
rived data tables. They are based upon both measured

engine variables and SSVM values. If an SSVM vari-

able is measured, the flight measurement (not the esti-

mated value) is then used in the nonlinear calculations.
The nonlinear calculations for several of these vari-

ables, SMF, AJNL, FNP, and high-pressure com-

pressor stall margin (SMHC), are linearized with re-
spect to WF, PT6, CIVV, and RCVV in real time.

The partials generated are used in the follow-on opti-

mization process. Additional information on the CEM
calculations is available in Ref. 3.

Compact Inlet Model

At subsonic flight conditions, the nominal inlet

schedules were determined to be already optimal, and

as such, inlet geometry is not included in the PSC algo-
rithm at subsonic conditions. Additional information

on the CIM is available in Nobbs et al. 11

Optimization Process

The subsonic phase of the PSC algorithm seeks to

optimize the combined performance of the engine. The



PSCsystemuseslinear-programmingtechniquesto
determinethe optimalenginetrims for the defined
engine-inletmodelandits relatedconstraints.The
linear-programmingoptimizationis performedon the
PSM,whichis a Iinearizedformulationof theCPSM.
Thelinear-programmingproblemdeterminesthe op-
timumsetof controldeflectionsandoutputvariables,
subjectto aspecificsetof constraints.

The PSC systemhas three primary modesof
operation: minimum fuel flow at constant FNP, min-

imum fan turbine inlet temperature (FTIT), and
maximum thrust. The minimum fuel flow mode is

primarily designed for cruise conditions, whereas the

minimum FTIT and maximum thrust modes are pri-

marily intended for use during accelerating flight condi-
tions. The minimum fuel flow at constant FNP mode

is designed to effectively minimize thrust-specific fuel

consumption (TSFC). The minimum FTIT mode is

designed to lower the FTIT while maintaining FNP
levels during both cruise and accelerating flight con-

ditions. (During cruise conditions, FNP is assumed

constant and constrained to a constant reference value;
during changing flight conditions, the FNP is as-

sumed constant during each optimization but is not

constrained to a constant reference value.) The max-

imum thrust mode is designed to maximize thrust at

MIL power.

The PSM forms the basis of the linear-programming
problem. Linear models from the CEM and CIM are

integrated to form the PSM. The PSM control and

output vectors, u and y, are defined to be:

up = [WF PT6 CIVV RCVV] T

yp = [N1C2 N2 PB WCFAN TT3 FTIT SMF

SMHC AJ FNP] T

Each control and output variable has associated
constraints used in the formulation of the linear-

programming problem. The constraints are functions
of engine hardware, empirical data, and the desired

goal of the optimization.

Digital Electronic Engine Control Interface

and Supervisory Logic

In addition to the PSC control law, the PSC sys-

tem includes the necessary logic to interface with the

DEEC as well as logic to monitor the engine operation.

The DEEC interface logic calculates the trims required

to achieve the PSC optimal engine operating condi-
tion. These DEEC trim commands are perturbations

on CIVV, RCVV, N1C2, and AJ. The supervisory
logic provides an additional margin of safety during

flight test. The engine is monitored to protect against

adverse situations such as fan stalls by modifying the

trims when necessary. Further, it contains maneuver

accommodation logic that will suspend PSC operation,

if warranted, and revert to baseline engine operation.

The DEEC applies the trims to the engine while verify-

ing that the engine will not exceed rotor speed, turbine

temperature, and combustor pressure limits.

The development of a PSC algorithm for the super-

sonic flight regime is presented by Nobbs et al, 11 and

a discussion of performance benefits achievable with

in-flight adaptive optimization is presented by Tem-
pelman and Gallops. _2

Flight Test Program

The subsonic PSC flight test program was conducted

at the NASA Dryden Flight Research Facility during

1990-91 and covered 10 months. The flight test activity

was a joint effort by NASA, McDonnell Aircraft Com-

pany, and Pratt & Whitney. The subsonic flight test

series was in turn broken into three phases: initial al-

gorithm validation, baseline algorithm evaluation, and

evaluation of a very degraded engine. All flight test-

ing to date has consisted of a single engine being in a
PSC mode at any given time. Simultaneous PSC op-

eration of both engines was not possible, but the PSC

system could be selected on either engine. One-engine

testing was not a disadvantage since most PSC system

benefits are on a per-engine basis. The single-engine

operation was actually more of an advantage for initial

PSC flight evaluation since the flight safety issues for

a single-engine research effort are much less than for
two engines. (The nontest engine was in a standard

F-15 configuration and as such, in a worst-case test

engine scenario, baseline single-engine capability was

available.) The flexibility afforded by reduced safety

concerns for one-engine test flight operation was a ma-

jor benefit in the PSC algorithm troubleshooting, mod-

ification, and evaluation process.

Initial Algorithm Validation

The objective of the initial flight test evaluation of

the PSC algorithm was to ensure that the algorithm

was behaving as predicted and that unmodeled flight

dynamics of the aircraft did not affect PSC mode op-

eration. This phase (and also the following phase) was
conducted using the refurbished engine. The nontest

engine was a standard F100 nonresearch engine. A

functional checkout of the PSC system's capabilities

was conducted first, followed by preliminary evalua-

tions of the various PSC modes. This initial phase was

also used to develop, evaluate, and refine the flight test

procedures for the following phases. This test phase
required four dedicated flights.

Primary Algorithm Evaluation

The objective of this phase was to obtain quantita-

tive flight test results for the refurbished engine. This

phase was not initiated until the identified problems of



theprevious phase were satisfactorily resolved so that

they would not be an issue when interpreting flight

results. The quantitative flight testing began at the
primary design condition of 30,000 ft. The SVM and

SSVM used in the algorithm were also developed at

this flight condition, and as such, the algorithm opera-

tion is expected to be the best at this flight condition.
Flight testing then proceeded to 45,000 ft, which is near

the best cruise performance of the aircraft. Flight test-
ing was concluded at 15,000 ft, which is an important

flight region for high-performance aircraft maneuver-

ing. This flight phase required i0 dedicated flights.

Degraded Engine Evaluation

The objective of this phase was to obtain quanti-

tative flight test results for a very degraded engine.
A comparison of these results with those of the refur-

bished engine would thus provide an additional indica-

tion of the robustness of the PSC algorithm. Testing
covered the same flight conditions as those used for the

primary algorithm evaluation tests. To obtain the best
quality data for comparison purposes, most of the ma-

neuvers were done in pairs; that is, a maneuver with the

degraded engine was then repeated on the same flight
with the refurbished engine. This was required to min-

imize effects caused by such things as atmospheric con-

ditions, flight conditions, and even piloting technique
(project flying rotated among three pilots). A num-

ber of parametric studies were also performed during

this test phase; the most important one was an eval-

uation of biases on the measured parameters used in

the PSC algorithm. What effect a measurement bias

on a key parameter has on the algorithm is a difficult
issue since no independent means exist to determine

what the bias levels are. 5 This flight phase consisted
of 20 dedicated flights.

Flight Test Maneuvers

The PSC evaluation process collected flight data pri-

marily from trimmed cruise flight (wings-level, con-

stant speed, and altitude) and constant altitude ac-
celerations, which ranged from M _ 0.50 to M _ 0.95.

Cruise Flight

Stabilized cruise flight conditions were used to col-
lect data for all three PSC modes. The maneuver con-

sisted of stabilizing the aircraft at the desired Mach and

altitude flight conditions with the PSC system disen-

gaged. Altitude was normally controlled with an au-
topilot mode, although the pilot was capable of similar

manual flightpath control performance with head-up

display commands. Constant velocity flight conditions

were maintained through pilot-commanded throttle in-

puts to the nontest engine.

The test engine conditions normally were set to a de-

sired power lever angle (PLA) and the engine allowed

to stabilize (rotor speed, temperature, and pressure)

before starting the data collection. The algorithm per-

forms its calculations, which include the determination
of optimal commands. These commands, however, are

not sent to the engine until the PSC system is engaged,

but are available for evaluation and comparison pur-

poses only.

In addition to the requirement for the flight con-
ditions and engine conditions to stabilize, there was

also the requirement to wait for the Kalman filter

of the PSC algorithm to stabilize. Although four of

the five efficiency parameters converged rather quickly,

DWFAN quite often required an additional 30 to

60 sec to settle out. Once everything had stabilized,

data with the PSC system disengaged were collected

for approximately 2 min; then the PSC system was en-

gaged and data collection continued for an additional
2 min. If additional parametric studies were being con-

ducted, this sequence continued with only the PSC sys-
tem configuration being changed.

In the minimum fuel flow mode, data were typically

collected with the test engine at 40 °, 50 °, 60 °, 70 °,

and MIL (_ 85 °) PLA settings. All cruise testing for
the maximum thrust and minimum FTIT modes was

with the test engine in MIL power. At some altitudes

with this high-power setting, idle throttle on the non-

test engine was not sufficient to keep the aircraft from

accelerating, and in these cases, the speedbrake was

also deployed as required.

Acceleration

Accelerating flight conditions were used to collect
data for the maximum thrust and minimum FTIT

modes of the PSC system. The maneuver nominally

consisted of accelerating the aircraft from M _ 0.50 to

M _ 0.95 at constant altitude flight conditions. All of
these accelerations were conducted with the test en-

gine in MIL power. The nontest engine was either
in idle power (_ 20 ° PLA) or MIL power; this en-

gine was not throttled by the pilot during accelera-

tions. With the nontest engine in idle, the acceleration

progressed more slowly and as such the algorithm was

nearer to a steady-state condition. The MIL-power set-

ting was used on the nontest engine at conditions where
the acceleration progressed too slowly or the aircraft

could not accelerate to M _ 0.95. (No part-power

throttle positions were used for accelerations since the

throttle position could not be duplicated for the fol-

lowing run.) Although acceleration times are drasti-

cally affected by the nontest engine throttle position,

the primary results presented are for the thrust or

temperature changes of the test engine and these are



notaffectedbythenontestengine. Altitude was nor-

mally controlled by the pilot using head-up displays.

The maneuver sequence started with the PSC system

disengaged and the pilot acquiring the desired initial
Mach number. The test engine was then put to MIL

power, which required the pilot to enter a turn to keep

from accelerating prematurely. The test engine stabi-

lized fairly rapidly, but the acceleration was not initi-
ated until the Kalman-filter portion of the algorithm

was also stabilized; then the aircraft was rolled wings-
level and accelerated at constant altitude to M _ 0.95,

at which point the maneuver was terminated. The air-

craft was decelerated and the maneuver repeated with

the PSC system engaged.

Acceleration maneuvers were performed for maxi-
mum thrust and minimum FTIT modes of the PSC

system. At 45,000-ft altitude, aircraft excess thrust is
so low that the maneuver was started at M _ 0.75 and

terminated at M _-. 0.93 due to the drag rise.

System Flight Test Capabilities

The PSC system was designed with a high level of

capability and flexibility to conduct parametric studies

of the PSC algorithm. Most changes required to con-
duct desired parametric studies were invoked in real

time through pilot entries on a cockpit keyboard. A

selected list of these capabilities follows:

Real-Time PSC System Capabilities

1. PSC system engaged or disengaged

2. Right- or left-engine select

3. Real-time or preflight estimation

4. PSC optimization with or without vanes

5. Unbiased or biased measurement input

In addition to real-time changes that the pilot could

make, many other control-law changes were possi-

ble between flights without a new control-law release.

Other, more complex flight code changes could be

made, verified, delivered, and installed in as little as

3 days. The overall system flexibility was a major at-

tribute in the PSC flight test program.

Flight Test Results

The three PSC modes have undergone subsonic flight

testing. Maneuvers were flown on the F-15 to evalu-

ate PSC system performance benefits and the dynamic

algorithm behavior. The engine flight data presented

in this paper were obtained from both a refurbished

engine and a degraded engine.

Minimum Fuel Flow Mode

The minimum fuel flow mode is designed to minimize

fuel flow while maintaining constant FNP (effectively

reducing TSFC) during cruise flight conditions. The
maneuvers flown consisted of flying at stabilized flight
conditions. The minimum fuel flow mode was evalu-

ated at high subsonic Mach numbers and at 15,000-,

30,000-, and 45,000-ft altitudes. Flight data were col-

lected for a range of PLA conditions.

Figure 4 presents the results for a typical mini-
mum fuel flow mode maneuver at a flight condition of

Mach 0.88 and 45,000 ft. Time histories are presented

for performance parameters (M, FTIT, FNP, and

TSFC), control variables (WF, CIVV, RCVV, and

A J), and engine operating parameters (EPR, SMF,
and the DEEC-calculated airflow, WACC). The PSC

algorithm was not engaged from 0 to approximately

120 sec. The steady-state value of TSFC with the

PSC system disengaged was approximately 0.99. The

PSC system was engaged from 120 sec through the end
of the run. The PSC algorithm held FNP to within

4-2 percent of the initial value after the PSC system

was engaged. The steady-state TSFC with the PSC

system engaged was approximately 0.97, a nearly 2-

percent improvement on fuel consumption. The fuel

reduction (at constant thrust) was achieved by open-
ing RCVV 2° to its limit (4 °) and closing AJ 40 in 2 to

its minimum nozzle area (388 in2). The CIVV is on its

limit throughout the run. This resulted in the engine

operating with both reduced WACC and SMF. This

flight condition is near the optimal minimum TSFC
condition for the baseline aircraft.

A comparison of measured and predicted TSFC sav-

ings which resulted from the PSC system is presented

in Fig. 5 as a function of test-engine power setting.
Data were collected at 15,000-, 30,000-, and 45,000-ft

altitudes for both the refurbished and degraded en-

gines. The TSFC savings are in general relatively
small. The calculation of TSFC is especially sen-

sitive to the parameters that define it (TSFC --

WF/FNP) and the relatively short run of data col-

lected. In spite of the scatter, the TSFC savings are

clearly established ranging from a few tenths of a per-

cent at the lowest power settings to one t _)one-and-one-

half-percent savings at the MIL-power setting. The

flight data are in good agreement with the predictions

at the high PLAs but are noticeably lower than predic-

tions at 50 ° PLA. In general, the best improvements
appear to be at 45,000-ft altitude. Based on the general

similarity of the data, it is clear that the PSC algorithm

has the ability to adapt to the specific health state of

the engine.

Although not large, the TSFC reductions could

significantly reduce takeoff gross weight or increase



range when considering long-range cruise segments, as
might be encountered for a second-generation super-
sonic transport.

Minimum Fan Turbine Inlet Temperature
Mode

The minimum FTIT mode increases engine life by
decreasing FTIT while maintaining a constant FNP

level during both cruise and accelerating flight con-

ditions. The maneuvers flown consisted of flying at
cruise and accelerating flight conditions. The mini-

mum FTIT mode was evaluated over a range of high

subsonic Mach numbers and at 15,000-, 30,000-, and
45,000-ft altitudes.

Figure 6 presents a typical time history comparison

of several performance and engine variables for back-to-

back accelerations from Mach 0.5 to 0.95 (at 30,000 ft)

with the PSC system engaged and disengaged. Time

histories are presented for performance parameters (al-
titude (h), M, FNP, and FTIT), control variables

(WF, CIVV, RCVV, and A J), and engine operating
parameters (EPR, SMF, and WACC). The FTIT
reduction gradually increases to 80 °R as Mach 0.70 is

approached, then gradually decreases to a reduction

of 45 °R as Mach 0.90 is reached. The PSC algo-
rithm held FNP to nearly the same value for both

of the runs. The FTIT reduction was achieved by
increasing EPR and reducing airflow by closing CIVV

from its maximum limit and closing AJ to its minimum

limit throughout the run and an incremental opening in

RCVV to its limit during the early portion of the run.

A comparison of measured and predicted FTIT re-

ductions as a result of the PSC system is presented in

Fig. 7 for the engine at a MIL-power setting. Data
were collected at 15,000-, 30,000-, and 45,000-ft alti-

tudes for both the refurbished and degraded engines.
The FTIT reductions are large at 45,000 ft, ranging
from in excess of i00 °R at the lower Mach numbers

and diminishing slightly as transonic Mach numbers

are approached. The measured and predicted FTIT

reductions agree well for all flight conditions.

To put these temperature reductions in perspective,
every 70 °R reduction will double turbine llfe caused

by temperature effects. 3 These benefits are very im-

portant especially at high-power settings where the en-

gine operates near its temperature limit. At 30,000 ft,
the FTIT reductions range from 45 to 80 °R at the

higher subsonic Mach numbers. Although less than

those at 45,000 ft, these reductions are still significant

in terms of extending engine life. The FTIT reductions

at 15,000 ft are at best small, and in some cases small
increases in temperatures were observed. These small

temperature reductions at lower altitudes are consis-

tent with predictions. 3 The variations in the data

at 15,000 ft also reflect the resolution, accuracy, and

repeatability of the closed-loop PSC algorithm
throughout the flight envelope.

Although the minimum fuel flow and minimum

FTIT mode optimal solutions are arrived at indepen-
dently, the resulting solutions are similar; that is, min-
imum fuel flow results in lower FTIT and minimum
FTIT results in lower fuel flow.

Maximum Thrust Mode

The maximum thrust mode is designed to maximize

FNP at MIL power. Both acceleration and cruise ma-
neuvers were used for evaluation. The maximum thrust

mode was evaluated using subsonic accelerations at al-
titudes of 15,000, 30,000, and 45,000 ft.

Figure 8 presents a typical time history compari-

son of several performance and engine variables for

back-to-back accelerations from Mach 0.5 to 0.95 (at
30,000 ft) with the PSC system engaged and disen-

gaged. Time histories are presented for performance

parameters (M, ALT, FNP, and FTIT), control vari-

ables (WF, CIVV, RCVV, and A J), and engine op-

erating parameters (EPR, SMF, and WACC). The
PSC algorithm increased FNP by approximately l 1-
percent above the nominal thrust level over the en-

tire Mach range. The thrust increase was achieved

by a large increase in EPR and a small reduction in

airflow by increasing WF and closing AJ to its limit

which resulted in FTIT and SMF reaching their llm-

its. The RCVV also opened to its limit during the
lower Mach range.

A comparison of measured and predicted thrust in-

creases produced by the PSC system is presented in

Fig. 9 for the engine at a MIL-power setting. Data

were collected at 15,000-, 30,000-, and 45,000-ft alti-

tudes in accelerating and cruise conditions for the re-

furbished and degraded engines. For the refurbished

engine at 30,000 ft, thrust increases average approxi-
mately 11 percent as Mach increases from 0.60 to 0.90

and compare very well with predictions. The degraded

engine has significantly less thrust-increase capability

and diminishes with increasing Mach number. This

level of thrust increases requires the engine to operate

hotter. For the refurbished engine, FTIT in general is

below the engine operating limit with the PSC system

engaged or disengaged. However, the degraded engine
is operating hotter over the flight envelope to achieve

a defined thrust level. In particular, with the PSC sys-

tem engaged, the FTIT limit is generally restricting
the amount of additional thrust increase.

The 45,000-ft thrust increase levels and trends are

similar to those at 30,000 ft. At the 45,000-ft flight
condition not as much data were collected since the

aircraft cannot stabilize at the lower Mach numbers.

The data are quite limited at 15,000 ft; however the



thrustincreasesfor thedegradedengine at the lower Based on flight test results, it is clear that performance

Mach numbers are low because of the engine temper- seeking control technology can provide significant

ature limit being reached. At M = 0.90, the refur- benefits to the next generation of fighter and super-

bished engine has a thrust improvement of 15 percent .......... transport aircraft.

while the degraded engine has approximately half that
amount. In general, the maximum thrust mode has References

performed well, demonstrating significant thrust in-

creases at MIL power.

The single-engine flight test evaluation for the min-
imum fuel flow and minimum FTIT modes com-

pletely characterizes the benefits of the PSC algorithm

since they are engine improvements as opposed to net

aircraft improvements. However, for the maximum

thrust mode, two-engine performance is of importance

since net aircraft performance is a primary interest.

Figure l0 presents one-engine and two-engine results,
with the two-engine results extrapolated from the one-

engine flight data. As indicated, the two-engine, PSC-

engaged acceleration time reduction is nearly twice
that for the one-engine case. The PW1128 engines are

one of a kind; the identified benefits are obviously a
function of its hardware and controller design.

Concluding Remarks

The initial flight test evaluation phase of the per-
formance seeking control algorithm was completed for

one-engine subsonic part-power and military-power op-

eration. The three performance seeking control modes
were evaluated at 15,000, 30,000, and 45,000 ft. The

performance seeking control system was designed with

a high level of capability and flexibility to conduct

parametric studies of the performance seeking control

algorithm. Most changes required to conduct desired

parametric studies were invoked in real time through

pilot entries on a cockpit keyboard. The overall system

flexibility was a major attribute in the performance

seeking control flight test program.

Flight results indicate that substantial benefits were
obtained from the performance seeking control algo-
rithm. In the maximum thrust mode, increases in

thrust of up to 15 percent at typical combat-type flight
conditions were identified. Thrust increases of this

magnitude could be useful in a combat situation. The
minimum fan turbine inlet temperature mode demon-

strated temperature reductions exceeding 100 °R at

high altitudes. If temperature were the only factor af-

fecting engine life, these reductions would more than

double engine life. The minimum fuel flow mode re-
sults demonstrated fuel consumption decreases of up

to 2 percent.

The single-engine subsonic flight phase has validated

the performance seeking control technology objectives.
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Fig. 1. The F-15 aircraft.
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Fig. 2. The PWl128 engine, sensor, and parameter locations.
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Fig. 4. Typical engine parameter time histories for minimum fuel flow mode evaluation (45,000 ft, degraded engine,
military power).
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Fig. 6. Typical engine parameter time histories for minimum fan turbine inlet temperature mode evaluation
(30,000 ft, refurbished engine, military power).

14



50

A FTIT, - 50
°R

- 150

............ _ ............ r ............ , ............ • ........... ,

h = 45,000

• A
A
o 0

9 i t

0 Degraded engine
A Predictions

5O

A FTIT, - 50
oR

- 150

h = 30,000

O

A
o o

I I I

50

A FTIT, - 50
oR

- 150
.5

h = 15,000

._ ........................ :............ ; ............ :

.6 .7 .8 .9 1.0
Mach 92o1_

Fig. 7. Predicted and measured fan turbine inlet temperature decreases produced by performance seeking control

as a function of flight condition.

15



1,o ....... Disengaged-i ..... __i
Mach ,7 .... Engaged ..... :-- -i"."-_:'!!!'-'_---i..... i ..... :..... i

.4 i i i i ._i i i ; , ;

TSFC, 1.0
hr-1 I " ' .....

0,8 I i i i i i i i i i i

7000 .........................................................
• , , ....-..i---i .... ... ...... •

. , : , :_--, . , . .

FNP, 6000 .... " ..... :..... .'::..::__:,-:,"_:-:'::-:"_---:---.-----:----.:i---!..... !..... !
Ib ...... :...--,-: ...... : : _ : : : :

5000 -- _ i _ i i i _ i i

2400 .........................................................

FTIT, 2200 ".-.'_--.:-:-:.--:"-.-:::'_:-._'.i---:.":!'.'::..",':'.:-..::::-:-o!!'!__=_:::_!--!_-'i-"
O R , •

2000 i i i i i i i ; i

WF, 6000
Ib/hr ...........

4000 , , , , , , , , , ,

....!.....!.....;....i.....i....i-civv :i !Vane

460 .... : ..... :..... : ..... :..... : .... : ..... :..... : ..... : ..... :

AJ, 420 ........... :.............. : ..... -:-+-.............
in2 ....,----:..,., ..........

: _--.-.; ........ .-"_...... ,-"\ ..... ......... -........ : ............... , .
380 , , _ _ r _ _ ; --;........ ;
4.0 ................. ...........................................

....,.....;...,.---_....... !....... ;..... :. : ........ :... , , . .

EPR 3.5 _ : _ : : ....

3.0 i i i L i i i , i ;

250 ..........................................................
_...........:-, .... _-,

WACC,240 ............... i .....i..... }.......... ;.... :T".......i:-;-:-::-!Ib/sec
230 ; i ; i i i .i i i i

SMF, 10
percent

-10
0 10 20 30 40 50 60 70 80 90 100

Time, sec
920167

Fig. 8. Typical engine parameter time histories for maximum thrust mode evaluation (30,000 ft, refurbished engine,
military power).
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